
PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

LiLa Booking System: Architecture and 
Conceptual Model of a Rig Booking System for 

On-Line Laboratories 
doi:10.3991/ijxx.vxnx.xxx (Please do not delete this line) 

V. Mateos1, A. Gallardo2, T. Richter2, L. Bellido1, P. Debicki and Víctor Villagrá1  
1 Technical University of Madrid, Madrid, Spain 

2 University of Stuttgart, Stuttgart, Germany 
 
 
 

Abstract—Many educational institutions acknowledged the 
importance of providing online-access to student 
laboratories. To optimize the use of the scarce and expensive 
resources such laboratories depend on, it is advisable to 
establish and setup a booking system that helps to 
administer access to them. 

This paper reports on the architecture and conceptual 
model of the rig booking system designed for the LiLa 
Portal, a web portal that makes virtual and remote 
experiments available on the Internet. The design of the 
booking system is based on a requirements analysis carried 
out by the EC funded LiLa project in cooperation with 
international partners from the Global Online Lab 
Consortium, GoLC. 

Index Terms—Remote Experiments; Reservation System; 
design for experiments 

I. INTRODUCTION 

A. LiLa 
In the context of the project LiLa (“Library of Labs”), 

many virtual and remote experiments of the contributing 
partners spread out over Europe are made available 
through Learning Management Systems (LMS) and an 
internet portal, the so-called “LiLa Portal.” The portal will 
also collect feedback from the students to check their 
knowledge and learning success, and to check whether the 
experiments fit their needs. [1] 

From a technical point of view, the LiLa Portal is a 
repository of virtual and remote experiments, available as 
electronic content packages that can be accessed and 
executed from the Internet requiring a Web browser only. 
These content packages can also be downloaded and 
reused in other LMSs such as moodle or Ilias. 

Remote experiments make use of limited resources, and 
pose the challenge of controlling the access to them to 
avoid conflicts and to maximize their availability. 

B. LiLa Booking System 
The LiLa Booking System provides the functionality to 

schedule the access to the remote experiments—or more 
accurately, to their rigs, as we will see later—with the aim 
to accommodate as many students as possible and to help 
them organize their activities in the portal. 

C. Document structure 
This document builds upon [2] but aims to be self 

contained, thus some sections from the original paper 
have been quoted here. 

The rest of this document is structured as follows: In 
section II, we give an overview on related work in the area 
of experiments booking systems. In section III, we 
introduce the conceptual model for LiLa and its booking 
system. In section IV, we provide technical details about 
the system architecture and its components. In section V, 
we describe how each user will typically use the system 
depending on her role. Section VI finally concludes and 
proposes future work in this area. 

II. RELATED WORK 
The concept of a booking system for remote 

laboratories is not new. Other projects have designed and 
implemented already some solutions that address the 
contended access to share resources. Some of these 
solutions are extensions to the functionality of selected 
LMSs and cannot be reused independently from them – 
hence, they are not suitable for LiLa purposes. For 
example, the MARVEL project [3] and its successor 
EDIPE [4] include a booking system for moodle [5]; 
WebLab [6] of the Slovak University of Technology in 
Bratislava is also a module for moodle; and ReLEEP, 
developed by the Qatar University also uses a moodle 
specific solution extending the “Meeting Room Booking 
System” (MRBS) [7] to accommodate their needs. 

Other solutions build on proprietary software, such as 
iLabs [8], which is open source itself, but requires a  
Windows Server machine and uses the Microsoft SQL 
Server and Visual Studio.NET; or NETLab [9], developed 
by the Indian Institute of Technology, Kharagpur, that 
relies on proprietary software licensed products from 
Oracle, National Instruments and Agilent. In [10], the 
authors present a “Web Service-based MetaScheduling 
Service” to coordinate the allocation of time-slots with 
local resources in Grid-Computing environments 
developed in the context of the VIOLA project [11].  
Solutions that are based on proprietary software are, 
however, unsuitable for LiLa purposes as well as they 
conflict with our license policy.   

There is even an alternative approach adopted by the 
Kumamoto University, Japan, consisting of a time 
scheduling system compatible with various LMSs that 
focuses on the generation of courses timetables [12]. 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

All these solutions are not easy to adapt, or cannot be 
reused at all, in the context of the LiLa project where the 
distinction of user roles, to be introduced below, is 
important, open source is a must, and re-usability and 
flexibility one of its main goals. 

III. CONCEPTUAL MODEL 
Due to the international nature of the project, the LiLa 

Portal and its booking system (from now on, “LiLa”) have 
been designed to minimize the overhead of administering 
its users and to maximize the student access to the 
experiments. With this in mind, LiLa is built upon three 
different portal user roles – content providers, teachers 
and students – and five key elements: experiments, rigs, 
reservation for teachers, reservation for students and 
tickets. 

This separation of roles and the support of Shibboleth® 
[13] (a federative authentication and authorization 
mechanism), saves us from the need of a central 
administrator (that traditionally had to assign rights to 
each user) and allows for portability of experiments to 
external LMSs. 

The following sections go into these concepts in greater 
depth. 

A. Experiments 
Within LiLa, experiments are software that can be 

accessed via the LiLa Portal and can be executed in a Web 
browser. We classify experiments into virtual and remote 
experiments, the former not requiring additional hardware 
(for these, there is typically no need of a booking system), 
and the later accessing limited remote hardware. 

B. Rigs 
Rigs are the remote hardware that remote experiments 

operate on: the scare resources, the expensive physical 
set-ups, the bulky and noisy machines, the fragile robots...  

Several experiments could operate on the same rig, but 
the reciprocal, one experiment requires more than one rig, 
has not been considered because it is a relatively rare case 
in education and we did not want to increase the overall 
complexity of the system unnecessarily. 

To allow this flexibility, the LiLa Booking System has 
been designed to administer rigs, instead of experiments. 
If an experiment requires a rig, this dependency must be 
provided when uploading the experiment into the LiLa 
Portal. 

LiLa requires for every specific hardware setup that is 
to be administered a rig name and a description. The rig 
name becomes its identifier within LiLa. It is the user’s 
responsibility to assign meaningful names for the rigs and 
to avoid names collisions. 

C. Roles 
Before defining reservations and tickets, it is necessary 

to dig into the LiLa defined user roles. These user roles 
are not a new concept in reservations systems. We can 
find them also, for example, in some airline's 
computerized reservation systems [14]:  the content 
providers in Lila act as vendors who provide their 
services; the teachers act as representatives for the 
vendors; and the students act as costumers.  

 
Figure 1.  A LiLa Portal user can play any of these roles. In this figure, 

“user” stands for “student” (a “student” is an “experiment user”). 

Content Providers are users of the Lila Portal 
authenticated by the Shibboleth IdP of a LiLa-friendly 
institution—having a trusted Shibboleth account is 
important for auditing reasons—who have uploaded at 
least one experiment to the portal. They must indicate 
when an experiment makes use of a rig to be able to 
administer its availability. 

Content Providers do not need to care about fine-
grained time-slots distribution among students in the same 
way as the airlines vendors do not care who a travel 
agency's representative sells a ticket to. Content providers 
create “reservations for teachers” (each with an 
associated reservation code) to delegate the administration 
of the experiments during defined periods to teachers. 

 
Teachers are users of LiLa, also authenticated by a 

Shibboleth IdP, that “hold” one or more “reservations 
for teachers”—hold in the sense that they know its 
reservation code. They have rights to create “reservations 
for students” (each with a corresponding reservation code) 
that further refine when the experiments will be available 
for their students. 

Teachers have the main task of finding and getting 
learning resources for their students where such learning 
resources are here understood to be the experiments made 
available by LiLa.  

 
Students are users of LiLa experiments (hosted in LiLa 

or external LMSs). To run an experiment that requires 
booking, a student must have a named account—
anonymous users are not allowed to use these 
experiments—and  must book a time-slot for its rig. 

D. Reservations 
To limit access to the experiments, the Booking System 

relies on the administrative elements “reservations for 
teachers,” “reservations for students” and “tickets,” 
depending on whose privileges they restrict. 

 
Reservations for teachers are administrative elements 

protected with a secret “reservation code” that content 
providers create to allocate rigs during selected time-slots 
for teachers. (See Figure 2. )  

If teachers want their students to run selected remote 
experiments, they must negotiate with the content 
provider which time-slots and under which conditions the 
corresponding rigs should be blocked. 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

 
Reservations for students are the administrative 

elements protected with a secret “reservation code” that 
the teachers create to allocate rig time-slots for students. 
(See Figure 3. ) 

 If a teacher that already has a “reservation for teachers” 
want their students to use a corresponding experiment, 
they must further refine the time-slots blocked by the  
tcontent provider for teachers’ exclusive use. 

This mechanism allows easy groups administration. For 
example, if a teacher wants to create two different groups 
of students of a selected rig, one using it on Monday and 
the other using it on Tuesday, the teacher would create 
two “reservations for students” with two different 
reservation codes; and then distribute one code to one of 
the groups and the other to the other group. Distribution of 
such reservation codes happens outside of the system, e.g. 
by writing them on a blackboard. 

E. Tickets 
Tickets allow students to make reservations within 

time-slots reserved for their student group, and hence to 
retrieve stamped tickets from the booking system. The 
system creates a ticket for a rig when the student enters a 
valid reservation code. The ticket thus consists of the tuple 
(student identifier, reservation code). Once holding a 
valid ticked, the LiLa Booking System will provide her 
with the list of time-slots during which the rig is still 
available for use. When the student selects one time-slot, 
the LiLa Booking System creates a “stamped ticket” for 
the student, i.e. adds the time-slot as third object to the 
tuple. 

Stamped tickets, finally, grant students access to rigs in 
the time-slot selected by the student. (See Figure 4. ). 

Even though students never physically see this ticket, it 
is still a system resource administrated internally by the 

booking server. Very much like a bus ticket, a ticket 
obtained by a student is valid for a single ride, which is 
redeemed by entering the bus – here selecting a time-slot 
for the experiment. It is then invalid for a second ride – 
here reserving a second time-slot. Only until after 
performing the experiment, the student is allowed to re-
use this ticket. 

IV. TECHNICAL PERSPECTIVE 

A. SCORM, SCOs and LLOs 
LiLa strives for maximal portability and reusability by 

conforming to existing standards whenever possible. The 
means to make experiments available in LiLa is based 
upon the ADL’s reference model “SCORM” [15]. In this 
model, the smallest runnable unit is called SCO 
(“Sharable Content Object”): 

“A SCO is a collection of one or more assets [electronic 
resources that can be rendered by a Web client] that 
represent a single launchable learning resource […]. A 
SCO represents the lowest level of granularity of a 
learning resource that is tracked by an LMS […].” [16], 
pp. CAD-2-4. 

For the physical exchange of learning content, SCORM 
defines the concept of “content package” that strictly 
adheres to the IMS Content Packaging Specification. A 
content package contains two major components: an XML 
document describing structure and resources of the 

 
Figure 2.  The content provider creates and administers reservations for 

teachers. 

 
Figure 3.  The teacher creates reservation for students (in this figure, 
“reservation for users”) with a protecting reservation code to allocate 

resources for the students. 

 
Figure 4.  The student (“User” in this figure) must enter a student 

reservation code to get a ticket, and can get a stamped ticket that grants 
her access to a rig during a time-slot. 

 
Figure 5.  A content package contains a manifest file – that lists all 
resources (SCOs and assets) in the package and its structure diagram 

(“organization”)--, and all physical SCO and asset files for the content 
package. 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

package called the manifest file (imsmanifest.xml); and 
the content making up the content package. SCORM 
recommends that the content packages be created as 
Package Interchange Files (PIF) [17] conformant with 
RFC 1951 [18], and mandates that the archive format be 
PKZip v2.04g (.zip). 

Specifically, experiments in LiLa are available via 
LLOs (“LiLa Learning Objects”). These are special 
content packages with a few imposed restrictions as 
defined in [19], like the following requirements relevant 
to the booking system: 
• An LLO must contain an HTML file that renders the 

content of the laboratory. 
• An LLO may only render a single web page, namely 

the page showing or providing the experiment. 
• If an LLO requires a booking system, the LLO 

metadata shall additionally contain the URL of the 
corresponding booking system server. 

B. LiLa, SCORM and ECMAScript (JavaScript) 
To allow the communication between experiments and 

LiLa, LiLa adheres to the SCORM reference model. In 
SCORM terminology, the content (experiments) 
communicates with the software that controls its 
execution and delivery (the LiLa Portal, or an LMS 
hosting LiLa experiments) by using the “IEEE 1484.11.2-
2003 Standard for Learning Technology – ECMAScript 
Application Programming Interface for Content to 
Runtime Services Communication.” [20] (For more 
details, see chap. 3 in [16].) ECMAScript is also better 
known under the name JavaScript. 

Technically, it means that the LiLa Portal must partially 
implement the API for content to run-time service (RTS) 

communication. The experiments can rely on this API 
being available, and can use it to query, for instance, the 
name of the user of the experiment. 

C. LiLa Booking System and JavaScript 
To implement the access control mechanism, LiLa 

embeds a JavaScript code fragment to every uploaded 
experiment that requires the booking system. This code 
becomes an integral part of the experiment (it runs in the 
students’ Web browsers) and is responsible for checking 
against a RESTful [21] server that the user of an 
experiment has a valid stamped ticket and that she is 
accessing the experiment at her reserved time-slot. If this 
is not the case, the code will render an informative 
message and will redirect the user to an interface (hosted 
in LiLa) to allow her making a new reservation. 

The decision of implementing the access control check 
with JavaScript code that executes in the client side (that 
is, in the students’ Web browsers) has two important 
consequences: 
• Experiments exported from LiLa into a different 

LMS will still be subjected to the LiLa Booking 
System access control 

• Students with appropriate programming skills could 
locally edit the JavaScript code to their advantage 
and overpass the access control. 

The LiLa Booking System is being provided though 
only as a helpful tool to ease the administration of rigs 
availability. The implementation of an all-purpose, 
universal and robust booking system mechanism 
surpasses the goals and resources of the LiLa project. It 
should furthermore be noted that one of the goals of the 
architecture was to depend solely on the interfaces 
guaranteed by SCORM, and these are based on client-side 
execution of JavaScript. 

Nevertheless, it is not as bad as it seems, because an 
experiment could still be designed to enforce the checking 
of a valid stamped ticket if this checking is implemented 
in the laboratory remote side, as we will see later in 
section IV.D.d). Such a mechanism has been 
implemented, for example, for controlling access to the 
WebLabs at the University of Cambridge. 

As content providers typically do not want to 
implement the necessary JavaScript code themselves, the 
client-side code to check against the booking system is 
automatically embedded into the LLO upon uploading it 
to the LiLa portal. In the simplest possible scenario, 
content providers would rather implement LLOs that 
directly render the experiment in the web browser, and all 
access checking is left to LiLa. No further check would be 
done, and no further infrastructure at the content provider 
side would have to be provided. An additional check to 
the booking system on the server side is hence only 
necessary in case additional security considerations seem 
appropriate. 

Another issue that must be considered is that this design 
decision restricts the execution of experiments to 
JavaScript-capable devices. However, JavaScript is also 
required when accessing standard SCORM content, so 
this is not a new restriction. 

 

 

 
 
<manifest> 
    <metadata>…</metadata> 
    <organizations> 
        <organization> 
            <item identifier="ID-0" 
             identifierref="RES-0" /> 
        </organization> 
    </organizations> 
   
    <resources> 
        <resource identifier="RES-0"> 
            <file href="applet.html" /> 
            <file href="lib/applet.jar" /> 
        </resource> 
    </resources> 
</manifest> 

 
Figure 6.  Conceptual content structure of an LLO. In this example, the 
LLO defines “applet.html” as the “entry page” to the experiment. The 

experiment includes an applet to perform its functionality (for instance, 
remote-control a robot). 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

D. LiLa Architecture 
The diagram in Figure 7. depicts very briefly the 

communication flow during the execution of an 
experiment. For simplicity, the authentication dialog has 
been omitted from this overview diagram. 

 
a) Client side: Web browser 

In LiLa, students run the remote experiments from 
within their JavaScript capable Web browsers. When the 
student accesses an experiment protected by the booking 
system, the Web browser will be first redirected to request 
authentication. Once authenticated, it will load the 
experiment content and execute its associated JavaScript. 
To operate a remote rig, the browser will need to 
communicate with an API running in the remote server 
that interfaces with the rig. The definition of this API is 
beyond the scope of LiLa; typically, Flash or Java based 
interfaces implement this API, sometimes LabView 
plugins are deployed as well. Thus, quite unlike other 
projects, LiLa does not define the interface to the rig. 

b) User authentication: Shibboleth 
LiLa uses the Shibboleth® System to implement its 

authentication requirements. Shibboleth is a federative 
authentication infrastructure for web sign-on that allows 
sites to make informed authorization decisions for 
individual access of protected online resources in a 
privacy-preserving manner. [22] 

There are two primary parts to the Shibboleth system: 
the Identity Provider (IdP), that answers to user 
identification requests; and the Service Provider (SP), that 
runs on the provider side and protects the restricted 
service. The SP can additionally run a discovery service 
(DS) that allows users to select an IdP from a list of 
trusted IdPs. (See Figure 9. .) 

The official LiLa website includes already an IdP (for 
institutions that prefer not to install their own); and is 
itself a SP that can require user authentication. It has also 
a DS service installed to delegate the IdP administration to 
other institutions. 

c) LiLa Portal 
The LiLa Portal is a Web application that runs on an 

application server; uses a database to persist experiment 
information and user interactions; provides an interface 
that allows searching, classifying and commenting 
experiments; and makes the experiments available in 
Internet. 

The LiLa Portal also implements the SCORM RTS, 
allowing the communication between experiments and 
LiLa. 

d) Booking System 
The LiLa Booking System is implemented as a client-

server solution: The server is a Web application that runs 
on an application server. It implements a RESTful API 
(Application Programming Interface) that can be invoked 
from any external HTTP client (for example, a Web 
browser running JavaScript). 

The server persists all reservations-related data in a 
database. The persisted data include information about the 
rigs, time-slots reserved and a codified user unique 
identifier (to preserve user privacy). 

The client is provided in two flavours: first, the LiLa 
Portal already checks against the LiLa Booking System 

 
Figure 7.  A student can find and access an experiment through the LiLa 

Portal, or through any LMS where LiLa experiments have previously 
been uploaded (1a or 1b). The student’s Web browser will download the 

experiment and execute the booking system code to check access 
permissions (2). If the student has a valid ticket, she can execute the 

experiment (3). 

 
Figure 8.  The arrows represent the communication between the 

browser and the rig 

 
Figure 9.  Authentication via Shibboleth 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

server that the user has a valid ticket for an experiment. If 
not, the experiment content will not be accessible. Second, 
LiLa also embeds into every uploaded experiment a 
JavaScript code responsible for checking this possession 
of a valid ticket. (See previous section IV.C, "LiLa 
Booking System and JavaScript.”) 

Note that if an LMS that hosts an experiment wants to 
enforce the booking system access control, the rig 
exercised by the experiment should itself communicate 
with the LiLa Booking System server, so an intrepid 
programmer cannot overpass the access control. 

It is theoretically possible to use a different booking 
system for LiLa experiments. Nevertheless, this case is by 
now very unlikely to happen because the LiLa Booking 
System RESTful API has still not been open-sourced and 
will probably change in the near future through successive 
incompatible versions. 

e) LMS 
Some functionality like content organization, content 

authoring, students tracking, etc. already implemented by 
existing LMSs is out of the scope of the LiLa project, but 
complements very well its purpose. LiLa was originally 
conceived as a repository of experiments. The use of an 
LMS in combination with LiLa allows for a coherent and 
comprehensive delivery of learning content. 

LiLa assumes that the usual case is that learning 
institutions already operate some kind of LMS. To 
leverage this existing infrastructure, LiLa offers the 
functionality of downloading experiments as SCORM-
compatible content packages that can be uploaded into 
any SCORM-capable LMS. The learning institutions can 
this way profit from a booking system for their 
experiments with almost no extra-costs for them. 

For students, this model provides the advantage of 
presenting a consistent view on the learning material, i.e. 
students never have to leave the LMS of the university to 
perform their homework. 

V. TYPICAL SCENARIOS 
In this section, we explain the general process of 

making a rig accessed by an LLO available for booking, 
and the process of booking and using it. After that, we 
describe the basic scenario for each of the different users 
involved in the LiLa Booking System to provide an 
overview of the conceptual model our work is based on.  

A. Overview: activity diagram 
The activity diagram in I.Adepicts the process of 

making a rig available and using it. As we can see, it 
separates the corresponding steps into three different lanes 
according to the Portal user role. This process is divided 
into the following steps: 
• The content provider registers a RIG in LiLa using 

the specific functionality of the Portal. The reason 
why the rig registration is needed is that Rigs 
themselves are booked, rather than the experiments. 

• The content provider uploads a RR-LLO (a LLO that 
requires reservation, unlike LLOs based on virtual 
experiments that are accessible without any booking 
procedure). 

• The content provider creates at least one reservation 
for teachers, using the content provider functionality 
of the Booking System within the LiLa Portal. This 
reservation is associated with a unique “booking 
code”. 

• The content provider provides this “booking code” to 
at least one teacher. Now, the rig and all experiments 
depending on it are available for the teachers. 

• A teacher enters this “booking code” into the LiLa 
Booking System, using the teacher’s functionality of 
the LiLa Portal. This step provides the teacher with 
the possibility to divide this reservation into several 
reservations for students that they can individually 
book. 

 
Figure 10.  The UML activity diagram summarizes the process of making a rig available for booking, and booking and using it. 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

 
• The teacher creates at least one reservation for 

students, using a unique “student booking code” and 
provides this code to the students by any means they 
see fit. 

• The student enters the “student booking code” in 
order to access the experiment. The system creates a 
ticket for the student. 

• The student selects an available time-slot for running 
the experiment and the system stamps the ticket. 

• Once the student has a stamped ticket, she can 
redeem it and access the rig during its assigned time-
slot, or cancel the ticket and select a new time-slot. 
After redeeming a stamped ticket, the ticket becomes 
available for a new reservation of the same rig again.  

Below, we describe how a LiLa authenticated user can 
use the LiLa Booking System, as a content provider, as a 
teacher and as a student. 
 

B. How a content provider makes a rig available for 
teachers 

In this step, additional information on the rig is 
required: 
• The rig name and a short description of the hardware. 
• The booking system by which this rig can be booked 

by users. The content provider can select “The LiLa 
Booking System” if she wants to use the booking 
system provided “out-of-the-box” with LiLa. 

• The number of instances of the Rig; this number 
describes how many identical copies of the same 
setup the content provider installed. Even though this 
number would typically be one, some universities 
may choose to duplicate rigs to increase accessibility 
(for example, the University of Technology in 
Sydney – UTS – follows this strategy). 

• The number of users per instance that represents how 
many users can run and view the identical rig at the 
same time. Again, this number is typically one, but 
for experiments running on a numerical cluster, the 
same hardware could accommodate more than one 
simultaneous user. 

Once the content provider has created the rig 
successfully, the next step is uploading the RR-LLO. This 
step is divided into two smaller steps. In the first one, the 
content provider needs to provide the LLO zip file to 
upload and the name of the rig that the experiment runs 
on. The name of the rig is required if the content provider 
wants to use the LiLa Booking System. Otherwise, the 
content provider must select “No Rig Required” as LiLa is 
not concerned with booking in this case; then, of course, 
the LiLa protocol for booking is not relevant. The second 
step requires the content provider to provide some LLO 
metadata, such as title, description, creator, language, 
contact, rights holder, etc. 

If an uploaded experiment identifies a rig it depends on, 
the LiLa Portal will offer to the content provider the 
functionality to create reservations for teachers. That is, in 
this step of the scenario, content providers will define the 
availability of a selected rig and create reservations for 
teachers; and along with such a reservation, a “reservation 
code”. 

For managing one reservation for teachers, the content 
provider is required to enter some sensible information 
about the reservation: 
• The rig the reservation code shall be valid for. The 

content provider can select one of her owned rigs 
from a list. 

• Booking code (or reservation code). The booking 
code has to be unique; Selecting a proper code is up 
to the content provider, the only constraint is its 
uniqueness. The very same code is then 
communicated to teachers for making experiments 
based on the booked rig accessible to students. 

• Time-slots: the content provider must specify the 
time-slots within which the teacher can create 
reservation for their students. It is possible to specify 
as many time-slots as the content provider seems 
necessary, e.g. “Monday, Wednesday and Friday 
from 10 am. to 2 pm”.  

Finally, the content provider has to communicate the 
reservation code to the teachers or institutions interested. 
The rig and all experiments depending on it are now 
available for use. 

The sequence diagram that explains the previous 
process is shown below. 

 

C. How a teacher allocates resources for her students 
One of the teachers’ tasks is to locate and identify 

experiments that fit their pedagogical. If a teacher finds an 
interesting experiment that is subjected to scheduled 
access control, the teacher must contact the content 
provider of this rig used by the experiment, and negotiate 
with the provider on the availability as described above. 

 
Figure 11.  UML sequence diagram that specify how the content 

provider makes a rig available for teachers 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

As result of this negotiation, the teacher will get a 
“reservation code” from the content provider of the rig. 

 This booking code is valid for an infinite number of 
student bookings within a given time period, and allows 
the access to the rig reservation during this time; it is, 
however, not valid for student booking or accessing the 
experimentor rig directly. Instead, the LiLa booking 
system allows the owner of such a code to divide the 
booked time-slot up into several slots that students can 
book individually. The student slots, however, can no 
longer be broken up. 

In the simplest possible use case, the entire time-slot 
reserved by the content provider is handed over to a 
single, large group of students, though set-ups that are 
more complicated are possible. For example, a teacher 
may give two lectures, both requiring the same 
experiment. In this case, she would probably want to 
break up the time-slot granted by the content provider into 
two slots, one for the first and another for the second 
student group, as is shown in the Figure 12. This ensures 
that the two groups cannot conflict with each other. 

In Figure 12. , we can identify three big time-slots in 
grey color (Monday, Wednesday and Friday from 10 am 
to 2 pm) corresponding to the reservation for teachers 
whose reservation code is “upm2semMWF”, and 2 
smaller groups of time-slots for students. The green 
colored is for the first group of students and the student 
booking code is “upmMWF1G”; the students who are in 
this group can access the rig on Monday, Wednesday and 
Friday from 10 am to 12 pm. The other group of students 
can access the rig the same days from 12pm to 2 pm using 
the student reservation code “upmMWF2G”. The time-
slots for the second group are represented by means of 
blue color. In this use case, the teacher should create two 
different reservations for users or students. 

To make the rig accessible to her students, the teacher 
then must log in into the LiLa Portal, and access the LiLa 
Booking System functionality; there, she must enter this 

reservation code to add the negotiated availability of the 
rig to her calendar of rigs availability. 

As in the previous use case, the sequence diagram that 
explains the process of creating reservation for users and 
how a teacher can use the LiLa booking system is shown 
in Figure 13.  

D. How a student accesses a schedule-controlled rig 
Within the LiLa framework, access to the LLOs is 

provided to groups of students – typically members of a 
lecture. Along with the reservation code, it is in the 
responsibility of the teacher to hand out the information 
on the URL under which the experiments can be accessed 
(could be the LiLa Portal or an LMS). 

Once the student has a student booking code and the 
URL to access the experiment, she needs to book a free 
time-slot of the set of time-slots that the teacher created 
for that rig and reservation booking code. For making a 
reservation of an LLO using the LiLa booking system (the 
student books the rig that the LLO uses), the student needs 
to do the following steps (see Figure 14. ): 
• Go to the URL in her Web browser, and sign into the 

system maintaining the experiments; this could either 
be the LiLa portal, but would typically be the 
Learning Management System of the university. The 
LiLa portal or the LMS will detect that the 
experiment requires the LiLa Booking System and 
this option requires an authenticated student. This 
authentication is thus handled by LiLa or by the 
LMS. 

• The LMS or the LiLa portal will provide a student 
identity. This identity is communicated to the 
JavaScript code embedded into the LLO upon 
uploading it to the Lila portal. 

• Enter the booking code into the provided interface, 
and click on Submit. Now, a calendar will appear 
that shows the student the available time-slots to run 
the experiment. 

 
Figure 12.  How to split the time-slots of a reservation for teacher into 

several reservations for students 

 
Figure 13.  UML sequence diagram that specify how a teacher allocates 

resources for her students 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

• Select a free time-slot by clicking on it. The LiLa 
Booking System will “stamp” the ticket for the 
student, granting her the access to the rig during the 
chosen time-slot. The “stamping” prohibits that the 
same ticket can be used again to reserve the same 
experiment twice. That is, the student cannot book 
the same experiment again before her reserved time-
slot has passed. 

With one “reservation code”, a student gets one ticket; 
and with one ticket, she can only get one stamped ticket, 
valid for running the suitable LLO. A student can only 
request a new stamped ticket based on the same booking 
code by cancelling her old one; additionally, a stamped 
ticked becomes valid for a new reservation again – i.e. the 
“stamp is removed” – once the time-slot reserved by the 
ticked has been expired. As we can see, besides the 
student can book a rig or a LLO, she can also access or 
run the experiment using the current stamped ticket, or 
cancel it. 

In order to run the experiment, the student tries to 
access the RR-LLO. The JavaScript code embedded into 
the LLO then checks whether the user has a stamped 
ticket valid during the access time. On that process, the 
userID, rigID, and stampedTickets for the user are 
required. 

The student can cancel a stamped ticket by clicking on 
the time-slot associated with the stamped ticket, in the 
calendar. (See Figure 15. ) 

VI. CONCLUSIONS AND FUTURE WORK 
This paper provides a detailed description of a 

solution to control access to virtual laboratories and 
remote experiments using learning objects, in the 
context of the LiLa project and the requirement analysis 
carried out by the Global Online Lab Consortium, 
GoLC. The solution is based on the identification of 
three different user roles and the idea of tickets. This 
solution gives educational institutions the flexibility of 
accessing the booking system functionalities provided 
by the LiLa portal through their own Learning 
Management Systems, facilitating the interchange not 
only of virtual experiments, but also of remote 

experiments accessing complex and costly equipment. 
The LiLa portal has already been released and feedback 
from the users is already driving the current work on the 
system in two main directions: improving the metadata-
based search functionality to help teachers find the 
experiments that they can include in their courses, and 
improving access control to help content providers 
verifying the rights of the users accessing remote 
experiments through the LiLa booking system.  

REFERENCES 

[1] eContentplus project "Library of Labs". (2009) EU 
grant ECP-2008-EDU-428037. 

[2] A. Gallardo et al., "A rig booking system for on-
line laboratories," in Global Engineering Education 
Conference (EDUCON), 2011 IEEE, 2011, pp. 643 
-648. 

[3] A. Cardoso J. Ferreira, "A Moodle Extension to 
Book Online Labs," in Remote Engineering and 
Virtual Experimentation Symposium (REV 2005), 
Brasov, Romania, 2005. 

[4] D. Hercog, K. Jezernik S. Uran, "Remote Control 
Laboratory with Moodle Booking System," in Int. 
J. Online Engineering, vol. vol.1, n.2, 2005. 

[5] Moodle.org community. (2010, November) 
Moodle.org: open-source community-based tools 
for learning. [Online]. http://moodle.org/ 

[6] M. Kvasnica and M. Fikar Ľ Čirka, "WebLab 
Module for the Moodle Learning Management 
System," in Proceedings of the 9th International 
Conference Virtual University 2008, E-academia 
Slovaca. 

[7] MRBS Team. (2010, November) MRBS: 
Introduction. [Online]. http://mrbs.sourceforge.net/ 

[8] MIT iCampus Outreach Project Team. (2010, 
November) MIT iCampus: iLabs. [Online]. 
http://icampus.mit.edu/iLabs/ 

[9] A. Maiti, "NETLab: An Online Laboratory 
Management System," in Education Engineering 

 
Figure 14.  UML sequence diagram that specify how a student books a 

schedule-controlled rig 

 
Figure 15.  UML sequence diagram that show how to run an 

experiment and how to cancel a reservation 



PREPARATION OF PAPERS FOR THE INTERNATIONAL JOURNAL OF ONLINE ENGINEERING (IJOE) 

 

(EDUCON), 2010 IEEE, 24 June 2010. 
[10] O. Wäldrich, W. Ziegler P. Wieder, "Advanced 

techniques for scheduling, reservation, and access 
management for remote laboratories," in 
Proceedings of the Second IEEE International 
Conference on e-Science and Grid Computing (e-
Science’06), 2006. 

[11] (2010, November) VIOLA. [Online]. 
http://www.fz-juelich.de/jsc/grid/VIOLA 

[12] H. Nakano et al., "Web-based time schedule system 
for multiple LMSs on the SSO/Portal 
environment," in IEEE EDUCON Education 
Engineering 2010, Madrid, April, 2010. 

[13] Internet2 Middleware Initiative. (2011, September) 
Shibboleth®. [Online]. 
http://shibboleth.internet2.edu/ 

[14] P. Chang, "Computerized Reservation Systems," in 
IEEE International Conference on Systems, Man 
and Cybernetics, 1992. 

[15] ADL. (2011, July) Home SCORM®. [Online]. 
http://www.adlnet.gov/Technologies/scorm/default.
aspx 

[16] ADL. (2009, August) Sharable Content Object 
Reference Model ® 2004 4th Edition Run-Time 
Environment Version 1.0. 

[17] IMS Global Learning Consortium. (2011, 
September) IMS Content Packaging v1.2 
Information Model. [Online]. 
http://www.imsglobal.org/content/packaging/cpv1p
2pd2/imscp_infov1p2pd2.html#Xad1736213 

[18] IETF. (1996, June) IETF RFC 1951 DEFLATE 
Compressed Data Format Specification version 1.3. 
[Online]. http://www.ietf.org 

[19] P. Debicki, A. Gallardo, V. Mateos, T. Richter, V. 
Villagra L. Bellido. (2009, November) D2.1-
Documentation of the software interfaces of the 
virtual portal. Document. 

[20] (2005, January) IEEE 1484.11.2-2003 Standard for 
Learning Technology – ECMAScript Application 
Programming Interface for Content to Runtime 
Services Communication. Available at: 
http://www.ieee.org. 

[21] Roy Thomas Fielding, "Architectural Styles and the 
Design of Network-based Software Architectures," 
University of California, Irvine, Doctoral 
dissertation 2000. 

[22] Internet2 Middleware Initiative. (2011, September) 
About Shibboleth®. [Online]. 
http://shibboleth.internet2.edu/about.html 

[23] ADL. (2009) Sharable Content Object Reference 
Model ® 2004 4th Edition Content Aggregation 
Model (CAM) Version 1.1. 

 
 
 

AUTHORS 

Verónica Mateos received the M.S. degree on 
Telecommunications Engineering from the Technical 
University of Madrid (UPM), in 2008. She is a Ph.D. 
student at the Department of Telematics Systems 
Engineering at the Technical University of Madrid (UPM) 
since 2008. Her research interests are in the area of 
security networks, and ontologies and Semantic Web. She 
also has participated on several research national and 
international projects. (E-mail: vmateos@dit.upm.es) 

 
Alberto Gallardo received the M.Sc. degree on 

Computer Science from the Technical University of 
Madrid (UPM), in 2001. He has worked in the air traffic-
control software industry for eight years and is since 2009 
Ph.D. student at the Department of New Media in 
Research and Teaching (NFL) of the University of 
Stuttgart Computing Center. His research interest are in 
the area of software quality, software architecture and 
software engineering. (E-mail: gallardo@rus.uni-
stuttgart.de) 

 
Luis Bellido is Associate Professor of telematic 

systems engineering at the Technical University of 
Madrid. He received his PhD degree in 
Telecommunication Engineering from the same 
University. His research interests include quality of 
experience evaluation, semantic web, multilingual web 
and advanced service design. He has acquired an 
extensive research, development and technical 
management experience in these fields through his 
involvement in a number of European Commission 
funded projects in collaboration with research and 
industrial organizations. (E-mail: lbellido@dit.upm.es) 

 
Peter Debicki is student of Computer Science at the 

University of Stuttgart. (E-mail: ruspete@po2.uni-
stuttgart.de) 

 
Dr. Thomas Richter: Ph.D. in mathematical physics in 

2000 from the Technical University of Berlin (TU-Berlin). 
Thomas Richter studied physics and mathematics in 
Berlin, and then worked as project manager at AlgoVision 
Technology, GmbH. In 2002, he returned to the TU for 
working on novel eLearning solutions. Today, he is a 
software architect at the RUS Computing Center of the 
University of Stuttgart, there in the department for “New 
Media for Research and Education” lead by Dr. David 
Boehringer. (E-mail: richter@rus.uni-stuttgart.de) 

 
Dr. Víctor A. Villagrá: Ph.D. in computer science in 

1994 from the Technical University of Madrid (UPM), 
Spain. He is an associate professor in telematics 
engineering at the UPM since 1992. He has been involved 
in several international research projects related with 
Network Management, Advanced Services Design and 
Network Security, as well as different national projects. 
He is author or co-author of more than 60 scientific papers 
and is author of a textbook about security in 
telecommunication networks. (E-mail: 
villagra@dit.upm.es) 


